MRI Image Processing Based on Fractal Analysis
نویسندگان
چکیده
Background: Cancer is one of the most common causes of human mortality, with about 14 million new cases and 8.2 million deaths reported in in 2012. Early diagnosis of cancer through screening allows interventions to reduce mortality. Fractal analysis of medical images may be useful for this purpose. Materials and Methods: In this study, we examined magnetic resonance (MR) images of healthy livers and livers containing metastases from colorectal cancer. The fractal dimension and the Hurst exponent were chosen as diagnostic features for tomographic imaging using Image J software package for image processings FracLac for applied for fractal analysis with a 120x150 pixel area. Calculations of the fractal dimensions of pathological and healthy tissue samples were performed using the box-counting method. Results: In pathological cases (foci formation), the Hurst exponent was less than 0.5 (the region of unstable statistical characteristics). For healthy tissue, the Hurst index is greater than 0.5 (the zone of stable characteristics). Conclusions: The study indicated the possibility of employing fractal rapid analysis for the detection of focal lesions of the liver. The Hurst exponent can be used as an important diagnostic characteristic for analysis of medical images.
منابع مشابه
A Combined Method Of Fractal And GLCM Features For MRI And CT Scan Images Classification
Fractal analysis has been shown to be useful in image processing for characterizing shape and gray-scale complexity. The fractal feature is a compact descriptor used to give a numerical measure of the degree of irregularity of the medical images. This descriptor property does not give ownership of the local image structure. In this paper, we present a combination of this parameter based on Box ...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملBiomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters
Background: Nowadays, image de-noising plays a very important role in medical analysis applications and pre-processing step. Many filters were designed for image processing, assuming a specific noise distribution, so the images which are acquired by different medical imaging modalities must be out of the noise. Objectives: This study has focused on the sequence filters which are selected ...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کامل